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ABSTRACT 
 

ZnO has demonstrated a possibility to 
be doped as a p-type by using nitrogen and 
other group-V elements.  A high nitrogen 
doping concentration by metalorganic 
chemical vapor deposition (MOCVD) with 
nitric oxide (NO) gas has been achieved.  
However, the processing window for 
obtaining the p-type ZnO:N film is very 
narrow, and the hole concentration is typically 
low. Possible compensation and passivation 
effects have been studied.  Hydrogen and 
carbon elements are detected by secondary-ion 
mass spectroscopy (SIMS). Considering the 
other experimental and modeling results, we 
believe that the impurities inadvertently 
incorporated with the zinc precursor could be 
compensating or passivating the nitrogen 
acceptor and result in the low hole 
concentration. 
 

INTRODUCTION 
 
ZnO, a wide-bandgap semiconductor 

material, is widely used in various 
applications. It can be easily doped to n-type, 
but is difficult to dope to p-type [1].  Low 
impurity solubility, excessive accepter 
ionization energy, and possible compensating 
mechanisms are the three main factors that 
could make p-type doping of ZnO difficult.  In 
addition to being of interest for ultraviolet 
light emitters, p-type ZnO has a potential 
advantage in the fabrication of novel solar cell 
structures: inverted CdTe devices, improved 
contacts to both p-type absorbers, and organic 

semiconductors.  The recent reports on p-type 
ZnO brings this potential close to reality [2-
9].  

In this report, we discuss the 
achievement and the issues that have been 
observed on the nitrogen-doped p-type ZnO 
films formed by MOCVD.  Special focus is 
put on the low hole concentration and 
possible compensation mechanisms.  

 
EXPERIMENTAL 

 
P-type ZnO films have been 

fabricated by MOCVD, using diethylzinc 
(DEZn) and nitric oxide (NO) precursors.  
NO gas serves as both the oxidizer and 
nitrogen dopant in this reaction.  The 
substrate is Corning 1737 glass. More 
information on ZnO:N sample fabrication can 
be found in previous papers [10].  

The composition of the ZnO films was 
analyzed by a CAMECA IMS 5f SIMS. Film 
topography was taken by atomic force 
microscopy  (AFM, Auto probe LS from 
Park Scientific Instruments with Si 
Cantilevers).  Electrical and optical 
properties were measured using Hall analysis 
(BioRad Model HL5500), capacitance-
voltage (double-Schottky surface contact 
with mercury probe), and a Cary 5G 
spectrophotometer.   
 

RESULTS AND DISCUSSION 
 

The MOCVD-formed ZnO:N films 
on glass substrate are randomly oriented 
polycrystalline with a light yellow color.  The 
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transparent spectra of the ZnO:N compare 
with the ZnO film shown in Fig. 1.  The 
increased absorption around the band edge of 
the ZnO:N made the film look yellow.  The 
topography of the ZnO:N on glass substrate is 
illustrated in Fig. 2.   
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Figure 1. Optical transmittance spectra of 
ZnO and ZnO:N films.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. 2.  The topography of a 0.74-µm-
thick ZnO:N film grown on a glass substrate. 
 

An O-poor growth ambient is required 
for nitrogen doping.  Therefore, all the ZnO:N 
films studied here were formed with NO gas 
as the oxidizer. When NO gas is the only 
oxidizer, nitrogen concentration levels in the 

range of 1.75x1021 ~2.60x1021 cm-3  have 
been achieved.  The high nitrogen 
concentration level can be achieved in a wide 
processing range, but the growth window for 
fabricating the p-type ZnO:N is narrow.  The 
p-type films are observed only in a 
temperature range of 400°-440°C [10].  
Although some of the ZnO:N films deposited 
in this temperature range are remain 
insulating.  

Results of Hall probe analysis of 
several ZnO samples are shown in Table 1.  
Undoped ZnO is n-type with a carrier 
concentration in the range of 1016~1018 cm-3.  
The nitrogen-doped ZnO samples are no long 
n-type but are insulator or weak p-type.  The 
hole concentration is around 1013 to 1018 cm-3 
and the resistivity is in the range of 2 to few 
hundred Ω−cm. The capacitance-voltage (C-
V) technique was used to confirm the Hall 
results.  Without post-deposition heat 
treatment, the C-V analysis indicated that the 
as-deposited ZnO:N sample is weak p-type.   

 
Table 1.   Electrical properties of ZnO films 
deposited at a temperature of 400°C. 

Doping C. C.  
(cm-3) 

µ  
(cm2/V) 

ρ  
(Ω-cm) 

ZnO -8.42 x 1018 3.2 0.235
ZnO -8.38 x 1016 6.3 11.8

ZnO:N 9.24 x 1013 236 286
ZnO:N 8.36 x 1017 4.55 1.64

 
The measured carrier concentration is 

several orders of magnitude lower than the 
nitrogen concentration.  With the achieved 
nitrogen doping concentrations, it is clear that 
the limitation is not due to the dopant 
solubility. Several other reasons could be: (1) 
a small fraction of the nitrogen acts as an 
acceptor.  There is a possibility that the 
nitrogen forming the [(N2)O] (two nitrogen 
atoms substitute on an oxygen site) double 
shallow donor instead of (NO) single deep 
acceptor [11].   (2) The nitrogen acceptors’ 
energy levels lie well above the valence band 
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edge. And (3), a strong compensation or 
passivation mechanism exists.  The second 
possibility has been discussed previously [10].  
The calculations indicated that the ionization 
energy needs to be as much as ~350 meV to 
explain the observed difference between the 
nitrogen and the carrier concentration.  
Considering the recent experimental result that 
the ionization energy NO is about 160 meV, a 
much larger carrier concentration should result 
[12].  With the knowledge of the possible 
impurities introduced by MOCVD procedures, 
in this study, we shall focus our attention on 
the third possibility: compensation or 
passivation effects by possible impurities 
introduced during MOCVD deposition.   

The depth profiles of hydrogen and 
carbon in ZnO:N films were obtained using 
SIMS.  In both ZnO and ZnO:N films, both 
hydrogen and carbon have been found.  Figure 
3 indicates hydrogen and carbon 
concentrations are strongly affected by 
deposition temperature. This observation 
indicates that the hydrogen and carbon 
elements are possibly introduced as the 
products of the zinc precursor ((C2H5)2Zn) 
decomposition process.   

It has been found that the other zinc 
metal-organic precursor ((CH3)2Zn) 
introduced some carbon into the ZnO film 
[13].   There are not many studies on the 
function of the carbon in ZnO film.  In 
nitrogen-doped ZnO, there is evidence that 
carbon has possibly bonded with nitrogen 
[14].  The recent theoretical study conducted 
at NREL indicated that the carbon-related 
defect in ZnO:N film most possible are donor 
type.  Thus, the carbon is an undesirable 
impurity for p-type ZnO film [15]. 

The role of hydrogen in ZnO has been 
well studied [16-18].  It has been indicated 
that hydrogen acts only as a donor in ZnO.  
There are not many studies on the function of 
hydrogen in a nitrogen-doped ZnO film.   
Considering the difficulty associated with 
nitrogen doping by MOCVD and the high 

level of hydrogen concentration in the ZnO 
film, we believe that hydrogen could be one 
of the important factors in determining the 
efficiency of nitrogen doping. 

Figure 3:  The hydrogen and carbon 
impurity levels varied with deposition 
temperature in MOCVD-formed ZnO films. 

 
Our study by Fourier transform 

infrared spectroscopy (FTIR) and first-
principles calculations indicated that there is 
a strong tendency for NO

- and H+ defects to 
form a neutral combined defect complex 
[19].  In undoped ZnO samples, hydrogen 
bonded with oxygen.  With nitrogen doping, 
the intensity of the absorption peak due to O-
H decreased, and the absorption line at 3007 
cm-1 due to the NO-H (anti-bonding) 
emerged.   This observation implies that one 
of the possible reasons for low hole 
concentration in heavily doped ZnO:N is due 
to the hydrogen passivation effect. 

In summary, we have fabricated p-
type, nitrogen-doped ZnO by MOCVD.  The 
nitrogen concentration achieved using this 
method is as high as 2.60x1021 cm-3.  
However, low hole concentration is observed. 
Hydrogen and carbon elements have been 
detected by SIMS analysis.  This, together 

3 

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

100 200 300 400 500 600

Deposition Temperature (°C)
Se

co
nd

ar
y 

Io
n 

C
ou

nt
s (

ct
s/s

) C



7. T. Aoki, Y. Shimizu, A. Miyake, A. 
Nakamura, Y. Nakanishi, and Y. Hatanaka, 
Phys. Stat. Sol. (b) 229, 911, (2002) 

with FTIR, XPS, and modeling results, 
provides strong evidence that compensation or 
passivation of nitrogen acceptors by 
inadvertently incorporated impurities exist in 
ZnO:N films, thereby resulting in the low hole 
concentration. 

8. A.B.M. Almamum Ashrafi, Ikuo Suemune, 
Hidekazu Kumano, and Satoru Tanaka, Japan 
Journal of Applied Physics, 41, L1281. 
(2002)  9. B.S. Li, Y.C. Liu, Z.Z. Zhi, D.Z. Shen, Y.M. 
Lu, J.Y. Zhang, X.W. Fan, R.X. Mu, and Don 
O. Henderson, J. Mater. Res. 18, 9 (2003). 
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